test-conda/index.ipynb
2017-07-27 15:13:33 -07:00

154 lines
23 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Welcome to an example Binder"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses a Python environment with a few libraries, including `dask`, all of which were specificied using a `conda` [environment.yml](../edit/environment.yml) file. To demo the environment, we'll show a simplified example of using `dask` to analyze time series data, adapted from Matthew Rocklin's excellent repo of [dask examples](https://github.com/blaze/dask-examples) — check out that repo for the full version (and many other examples)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup plotting"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Turn on a global progress bar"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from dask.diagnostics import ProgressBar"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"progress_bar = ProgressBar()\n",
"progress_bar.register()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate fake data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import dask.dataframe as dd"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df = dd.demo.make_timeseries(start='2000', end='2015', dtypes={'A': float, 'B': int},\n",
" freq='5s', partition_freq='3M', seed=1234)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute and plot a cumulative sum"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[########################################] | 100% Completed | 16.5s\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD1CAYAAAC2nUlHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecFeXV+L8HBDSCdJaOdEERFSN214ZYAibGhjGoxFje\n2PLqG03iL/omIWLyxhIjGnuJRGxRMaBYFgRBbCi9iLSlSlcBWTi/P86Mc3f37u7dvXdv2Xu+n8/9\nzMwzz8ycLfc585xznnNEVXEcx3Hyk3qZFsBxHMfJHK4EHMdx8hhXAo7jOHmMKwHHcZw8xpWA4zhO\nHuNKwHEcJ49JWgmISDMReV5E5onIXBEZKCItRGSiiCwUkTdEpFlM/1tEZJGIzBeRQTHtA0RkVnDu\nnmTlchzHcaomFTOBe4D/qGof4GBgPnAzMFFVewFvBceISF/gfKAvMBi4X0QkuM9oYISq9gR6isjg\nFMjmOI7jVEJSSkBEmgLHqeqjAKpaoqpbgCHAE0G3J4Czg/2hwBhV3aWqS4HFwEARaQc0UdUZQb8n\nY65xHMdxaolkZwJdgfUi8piIfCwiD4nIvkCBqq4N+qwFCoL99sDKmOtXAh3itBcH7Y7jOE4tkqwS\n2As4DLhfVQ8DviYw/YSo5aXw3BSO4zhZyF5JXr8SWKmqHwTHzwO3AGtEpK2qrglMPeuC88VAp5jr\nOwb3KA72Y9uLyz5MRFyZOI7j1ABVlXjtSc0EVHUNsEJEegVNpwBzgFeB4UHbcODfwf4rwAUi0lBE\nugI9gRnBfbYGkUUCXBxzTdlnpvTzu9/9LuX3rO1PLsqcq3K7zC53XZC5MpKdCQBcA/xTRBoCnwOX\nAvWBsSIyAlgKnBcM4HNFZCwwFygBrtZIwquBx4F9sGijCSmQzXEcx6mEpJWAqn4KfD/OqVMq6D8S\nGBmn/SOgX7LyOI7jOImT9yuGCwsLMy1CtclFmSE35XaZ00cuyp2LMpdFqrIXZRMiorkkr+M4TjYg\nImhtOIYdx3Gc3MaVgOM4Th7jSsBxHCePcSXgOI6TZQwdCuPHp+dZrgQcx3GyiI0b4ZVX4L33krvP\n9Omwdm3V/VwJOI7jZBGLF9t2y5bS7W++CY8+mvh9jjoKbr656n6uBBzHcbKIJUugXj1YsaJ0++WX\nw4gR5fvv2QPvvw9h9Pxnn8H27ba/e3fVz3Ml4DiOk0UsWQInnABLl5Zu37Ejfv/HHoMjj4Rp0+y4\nf3+47z7bX7as6ue5EnAcx8kStm6Fl1+G88+HBQtg167oXEmJbcuaicaNg65d4V//gjVrrO2dd+CA\nAyLTUmW4EnAcx8kSfvITmDEDjj8eunQx0w7At9/a4H/eeXDllVH/khKYNQseeQQefxwmT7b28ePh\n6KPNyfz115U/05WA4zhOlvDhh3DPPdC7N5x7LjwRFOm9+WabFYweDWPHmh9g1Cho0AA+/9ycwD17\nwjXXwPAgiX+3bvZZsqTyZ7oScBzHySAffAC/+AWIwOrVNpDXqweDBtk5gLvusm2LFtCmjfUbN87s\n/wB7720moXXr4K9/tbYf/xh69KjaJJSKegKO4zhODbnwQnubD5EgzVuvXrBwIezcacdTp9p2//3N\nafzJJzB3btT+wAPwox+Zovj6a/je96B796qVgM8EHMdxMsTu3WbvBzj1VNi0KTrXurWdnzYN+vQx\nGz+YiWf2bLuuUydTIgCtWsGwYbb/ve/ZtkcPWLSochlcCTiO42SIhx6K1gO88AI0axadE4EOHeD0\n000JhBx4ILz7rg36Ejc5dESfPjBvXuV9XAk4juNkiOXLbTttGjRpUv78kiW2PiA2VPTAA+Gtt6Bl\ny6rvf9BBNmuoDC8q4ziOkyGGDLFonnPOiX8+fNOfN8/i/sHWEjRtavuJDIddusDy5V5UxnEcJ+uY\nNQv6VVJZvVUr2HffSAEA7LefRQMlyi9/Wfl5nwk4juNkgK1boV0729avH79PcbGZgvbfv3T7woUW\nITRoUGLPqqy8pIeIOo7jZIDZs6Fv34oVAJhjOB69etknFbg5yHEcJwNUZQpKF64EHMdxMsDs2Ra9\nk2lcCTiO42SA5cst1UOmSYkSEJH6IvKJiLwaHLcQkYkislBE3hCRZjF9bxGRRSIyX0QGxbQPEJFZ\nwbl7UiGX4zhOtrJ6tTmGM02qZgLXAXOBMHTnZmCiqvYC3gqOEZG+wPlAX2AwcL/Id2veRgMjVLUn\n0FNEBqdINsdxnKxh/HjYtg1WrYL27TMtTQqUgIh0BM4AHgbCAX0IECRB5Qng7GB/KDBGVXep6lJg\nMTBQRNoBTVR1RtDvyZhrHMdx6gxnnAHXX28ZP9u2zbQ0qZkJ3AXcBOyJaStQ1bDO/VqgINhvD6yM\n6bcS6BCnvThodxzHqTPMmmXbt96ylbwNG2ZWHkhynYCInAWsU9VPRKQwXh9VVRFJ2Qqv22677bv9\nwsJCCgvjPtZxHCfr+PBDOOQQmDkTrr229p5TVFREUVFRQn2TWjEsIiOBi4ESYG9gP+BF4PtAoaqu\nCUw976jqASJyM4Cq3hFcPwH4HbAs6NMnaL8QOEFVryzzPF8x7DhOzrBnjw38Rxxhx//935b35/bb\nzTeQ6IrfZKlsxXBS5iBV/bWqdlLVrsAFwNuqejHwChAUOWM48O9g/xXgAhFpKCJdgZ7ADFVdA2wV\nkYGBo/jimGscx3Fyks8+g8JC+OorO16wwKqB3XcfnHBCRkX7jlSnjQhf0+8AxorICGApcB6Aqs4V\nkbFYJFEJcHXMq/3VwOPAPsB/VHVCimVzHMdJK198Adu3W5roTz6x465dYejQTEsWkTIloKqTgEnB\n/kbglAr6jQRGxmn/CMiCRdSO4zip4Ysvov0NGyzpW9lkcJnGVww7juOkmNmz4dVX4bXX4Le/tbY5\ncywF9H77ZVa2sngWUcdxnBQTJobbf3+YMMFmAZMmWdbQbMNnAo7jOCkkthTkqadCgwZWHGbSJCsN\nmW24EnAcx6mAX/4SEgy3/46ZM6PKX2Hd4NatbTZw6KEpFS8luBJwHMcpw4IFcNpp8NJL8Prr1bv2\nuefgsstsP8wNdNJJts2WsNBYXAk4juOUYeJEeOMNi+aZPr16186aZQoEoGNH2x54IEyeDL17p1TM\nlOCOYcdxnDIsWwY//SmsXQtTp8Lu3ZWXgYxl6VLo1s32mzWL2o87LuVipgSfCTiO48SwYQM8/zz8\n7GcW2dO2rZmHEkHVFEiXLvDww9lp/imLKwHHcZyAPXvgF7+A44+HY46xtnbtLO1zIhQXmzO4SRMY\nMSJyEGczbg5yHMcJmDkTpk2DTz+FesErcvPmsGlTYtd/9BEcdljtyVcb+EzAcRwnYNkyS/DWtGnU\nVh0lMH06fP/7tSNbbeFKwHEcJ2DZMujUqXRbixaVK4EwP9CePfDyy1Y5LJdwJeA4jgNs2QI33ADf\n+17p9spmAl99ZZFAmzfDY49B48ZR7YBcwZWA4zgOlvsf4OqrS7c3bw4bN8a/5tNPbbtiBfzpT3Dv\nvZEvIVfIMXEdx3Gqx9SpZqapipkz4ec/L5/q+bDDLFS0pKT8NTNm2HbUKFi9GgYOTFrctONKwHGc\nOs1vfgNnn115rL+qregNw0JjOfpoM/N89FH5c+PHQ5s28M9/wjXXgMQt4JjduBJwnAyycaNVnnJq\nj7lzbXvAAfHPb9liJpznn4dT4pbCghNPtCygsezebeGkYcH4X/4yNfKmG1cCjpNB+vdPflXpPffA\nmjWpkaeusXOnOW3DFM6xaZ5DZs60N/i7744SvpXl4IPh3XfhmWeitr32Msfw4MF23KZNamVPF64E\nHCdD7N4NK1eameG7StsJsH175MT85hu4/nr4299qR8ZcZ+1aG5xnz7ZUDsuXl++zeTOcdRZcd13F\n9+ndG8aNg4suKp1V9NJLYcAAm03kKq4EHCcFrF9v8eErVyZ+zdtvW9Hx9u1L16Ktiv/6L5tBrF0L\n++5rbSNHVk+RpIPt22HbtszKsGaN5f4B6NzZonjKsnlz6URv8YitCDZ1qs0oOnSA226ztmwrGVkd\nXAk4Tgr44ANzEr73XsV9vvkGzj/fUg0vXAiDBsEll8Dhh8OHH1b9DFVo1AheecWOw8ENLFfN/PmJ\ny7t2bWnTRm1wzjlmRkk348bBH/5g+2vWWO4fMPPNnj3l+yeiBFq0sGufeAIefxwaNrTfYevWKRU9\nI7gScJwUsH69bUMnZDxmz4axY20xUd++cNVVVoR8wIDElMDy5fDtt5blMpbDD7folylTEpf33nvN\ntFGbTJ5saZXTzahRcOutth87E6iIRJQAmN/g6KOj2URJCeyzT3KyZgOuBBwnQbZsgQcfjH/uyy+t\njuzChRVfP3euDdY7dpg/YOBAi0o5+GCYM6fq54c5aa66yhYmHXmkDUqPPgo/+AH84x+J/yxhzHui\nOXFqQphBc+vW2rn/t9/apyyxyjBWCTRqZL/7siSqBAC6d6++nNmOKwHHSZDp0+HKK+E//yl/bv16\ni0D58suKr58xA446KqpUFVaZ6tu38hlE7DMA7r8fbr7ZwhOnToV+/eDHP4bFi8s/f8uW8oqppMQq\nZ0FiyqembNtmC6+q4yepDkccAaefXrotNpb/8svhkUciJdCqVfQ7jJXx7rsTVwIike8l0SIz2U5S\nSkBEOonIOyIyR0Rmi8i1QXsLEZkoIgtF5A0RaRZzzS0iskhE5ovIoJj2ASIyKzh3TzJyOU5tEIYX\n/upX5c+tXw99+pQeZIqLzSyhavbksWPh3HNtBvDzn0f28q5dYdUqC2esKSIWB1/WL/DDH5Yvabhg\ngb39DhsGn39e82dWxs6d9jN3716xEhg2zHwiNeXTT+33FrJmjZnGAHr2tKIuy5dHSqBNm/JK4E9/\nsm2vXtV79llnwU031UzubCPZmcAu4AZVPRA4EvgvEekD3AxMVNVewFvBMSLSFzgf6AsMBu4X+W6N\n3WhghKr2BHqKyOAkZXOclLJlCwwdCkuWlB6wVe0N9Mgjozfxr7+Giy82B+W6dfaW3rixDfhgZqUw\nUVn9+vaWWlxc+fOHDYOnnqr4fDwlMG1a+X7r11vt2549Ta5k+fLL8iGS27ZZxEzHjvEjcsBmVE88\nUfm9L700KtoeS+gcD9/GVU0Jg/leYs1coWO4devySuC552xb3XQPr74aKZBcJykloKprVHVmsP8V\nMA/oAAwBwj/vE8DZwf5QYIyq7lLVpcBiYKCItAOaqGqQiYMnY65xnKxgyxYbULp0KZ2CYOlSixQ5\n5xwbEFXh//0/eOcdG+hfesns1JUVG9m5096ax4+34/nzy9vrN260KJWK6Nix9JuxamS62LbN8uds\n2mQytm5t/oSxYys3Yf3hDzBvXsXnwe51zTWl27Zts4ilgoLyAy+YbX7nTpvBVBRGqmqROG+8Uf7c\nBx/Yds4c8wtcd53NbsDe6sN9iGZcrVuXrhC2cqX9Tr/6Cho0qPxnrMukzCcgIvsDhwLvAwWqujY4\ntRYoCPbbA7GTw5WY0ijbXhy0O07WsGWLFRvp3bu0Evj4Y2tr3NgGtSlT4K9/NXv0OeeYI3fEiGgW\nEI8w4mfu3Mi0FKYjCKlKCRQUmDIKWbfOBuJDDzXlcvbZMGaM3b9VKzj1VItMuvvu+PdbtMjMWbGL\no8oSOpjL2tRDJdCiRfwMnNOm2VqHAw+seDaydKmFYhYXw513ln7mu+/CAw9Es5/Vq+3c9u02oIfr\nJ0Ts7wLlZwJvvAGnnRb1zVdSogREpDHwAnCdqpbS66qqQJYtY3Gc6hNPCSxZYk7Z0CzRvz+88IK9\n9V9yCZx0UnT9qadW/YwlS8xfAKVzCk2ebI7lDpW8GpVVAmPG2CB54IH2Rg2msMKZgAgMGVLx+oJl\ny2y7VyVFaMM37rKzltAc1LJl+ZBWsDf5o4+2XPwTJsQ3W82caWspfv3r0n6Y0aMtj0/btvaWP2uW\nRVk99FAUkRT6AWIzf5b1CSxeHJmQ8pmkawyLSANMATylqv8OmteKSFtVXROYesJJWDEQW7enIzYD\nKA72Y9vjWkhvC5foAYWFhRQWFib7IzhOQmzebKtOmzQxE0lJiTkIIXoTHjLEBq0RI2xg+slP7G34\n008rVwJ//rP5FcaPj8wz33wTnf/sM7jiivJVr2IpKIhyCG3ZYiapmTPNfn7DDZbjZvp0Gyh79rR+\nvXpVHNa6aFF0r4oIB/+yA/3WrZXPBEpKTI5Onez3BeVXPK9bZ+a3P/zBZgJhuOe779p9jzoKiopM\n8a1eDT16RNeG/pbY3P5lZwLLlkV5f+oaRUVFFBUVJdQ3KSUQOHUfAeaqauyk8hVgODAq2P47pv0Z\nEfkrZu7pCcxQVRWRrSIyEJgBXAzcG++ZsUrAcdJJcbGZD775xga2l16ymcG2bdFMYPhwG9QKAgPo\nXnuZYhgypPJ733ijRdM8+6yZQYYONaWxbJnZrK+5Bu64o/J7FBRENu/t220g7NbNFoXde6/Jdfrp\nNhs47TTrV1EqBbA35RYtElMC48ebz2Ho0Ki9WTO7fsmSiq+PVWpXXmkmnth7N28eLdKaM8eUwNKl\n8Npr9mbfqpUpzVWrIgcwxE8bXdYnsHRp+doBdYWyL8i33357hX2TNQcdA/wEOFFEPgk+g4E7gFNF\nZCFwUnCMqs4FxgJzgfHA1YG5COBq4GFgEbBYVSckKZvjpAxVW9U7YED0dnveeTbQNW4crRwNC5S3\nbFn9Z9SrBxdeCLfcYm+1q1bZIBUOaFU5L1u2jP/W3bq1DcTHHWcLzqZNixY9NWlikUzxWLzYQi6r\nUgLhQP7II1H72rWmlDZutFlM2bf88DhWCTz4YOkEb7E+kJYtIzmKiyOzWMuWNtvZtKn0Qq6XXorW\nQoQ0aWJhvtu3m8KdM6fi9NL5RLLRQVNUtZ6qHqKqhwafCaq6UVVPUdVeqjpIVTfHXDNSVXuo6gGq\n+npM+0eq2i84d238JzpOZli71gaQTp1sYJo82drHji3db9997a34vPOSe17DhtH+ggVW7ORnP6v8\nmmbNzGQVLz9OSBhHHzqpGza0ATl25e2mTbYKec6cKEPmzJlR5tJYNm+2RVujR5upKVRYoRIIzWVl\n/Q6bN5vCPPPM0quwu3SJzFPhTABM0X71lZmR1q8vvQBs/HhL3hfruxg0qHxtABG7rrjYFFyzZnUj\n90+y+Iphx0mAefNsZa+IDUw7dljUT5Mm5fsOHmzhmsny+OP29j9xIvz0p1VnqtxrLxsst261QT2e\nQzeMoglnLmH0zFdfRX0mTjSfxuefm4N7yxaLMIpXQH3DBhuIr7zSfu533zVl8dlnNuA2bGiO85kz\nS1+3fr0NwE2bmiN80qQo+V5Ytzd2JhDKeOutpozDWVE44wrNUFXRvbv5Q4qKojQc+Y4rAcdJgHnz\nItNBODCdcUbtPnP4cIs2mjIFDjkksWv23Rfef9/MKp07lz9/113lk7qVVQKLFtkCrWXLbOYTOn1F\nTDH8619R3xUrIoV3+OEWwdS/v72dh36RLl1MOcyeHV0XKoGQ4483R+9NN0Uhoxs3lp4JrF5tJqfY\nkNVDDrEUGj/8YWK/n1GjbHvPPfY8x5WA4yTE/PlROGHz5rYfOldrk4ICSzZ30EGJ9V+1yt7IK3J6\ntm5tg3IsjRtHfoHXXrPMpp06mRJp3z5aybxjh/3cF15oMi1fbiUZw/udfHLpATr8fXXubOaiY46J\nfAFllUBI165RbYUFCyI7f+PGpsDWrzeFEdK8ua3cTTSPz/e/D//zP7Yew5WA4UrAcRIgdiZQv74N\nIulYZdq2ra1LCEMeE+WLL8oP9hUROxN45x3bhqantm1LR9SE+ZOuuSZKWheWZOzbt/RK3dDvEMbu\nN2oUhbCuWxdfCbRvb/H+v/iFvfmHP0OoqP7yl+h+NaWw0P52hx6a3H3qCq4EHCcBYmcC6aSgIHFT\nEFgUUL16ZpZJ9LpYJRA6dsP0zw0alF8VfO65FmGzYQP86EeRs1nEBtbu3c0xHGYFGz7cnL3dupk5\naffu0sVeYhk61K7/+99txXR4j3DVbyp8LYWFlnY7WWVSV0h6sZjj1HW2bTP7dDwbe21z3nmlF41V\nRdeu5mwdN87eqBMhVgl88YWZk2Kjm8L0yRs3mg9g3TpbDb1ypdn5YwurjB9v/WMH2EaNzBnbqZOF\nqd54ozl0K5rdtGljyiJ2XUQqlcA++ySXvbSu4UrAcapgwQJbWVsvA/Pm/v2rf03jxhZeWVVFrZAm\nTSwCaNw4M+9Mm1Y66unppy01g4gpwrZtozoEZStrVVZpK7TvP/10tGI5HmHq6dh7haa3smmxneRx\nJeA4VbBoUeWDVrYxZUr8zJ0V0auXDerhm3fZsNdhw0ofN2xoDuDqPAPs/sOGmWKrLF1Dv36lU0CA\nrbieM8fCUZ3U4krAcapg587qO2YzSefO1TNd9e9f/QIpgwZV3Sce3brZtrIyjWGtgFgaNTLHs5N6\nXAk4Tp5z0klRhbFkVzpXRWjbryx9c10p25gruBJw8p4vvoBnnjGb97ffQr7lKGza1EJg16yxyJna\nplMnWzPgZAeiZTM7ZTEiorkkr5MbXHSRKQEw5+/u3RaRs2OHrQ5+5BGzsz/2WGbldJyaIiKoqsQ7\n5zMBJ+8J8+m0bGkKACwVwa5dttJ1yZLEF145Tq7hi8WcvGT37igdQpi++PLL7e1/82bLohnW6507\n16pzOU5dxJWAk5eMGmULj3bvtrj0m2+OFhC9/LLlpAlLNS5aZGGUjlMXcSXg5CXTp9t22TJbofqn\nP1nCtd27Lc3w+edHSiCsyes4dRFXAk6dZPduePHFyMZfljC+4J13ogydjRrZeoDJk60M45o1UbqE\nmlQKc5xcwJWAUyf59FM455wo6qcsYWKyF14onaa5UydzBB94oEUKrVxpyqFRo9qX2XEygSsBp07y\nySe2nTrVtrt3l65u9e23UWnCWCUQvvEXFNhn7lxPVeDUbVwJOHWSTz6x1a8ffGDHr75aOn/83LmW\njwZKK4H+/a0sY1iPds4cNwU5dRtXAk6dIQz1BFMCw4ZZBtA9e6JkZxs2mI1/82bLlzNwYOk6AXff\nHaVuLiiwUo2ZSCHtOOnClYBTJ1i71hZ0ffihmX4++8zKEDZtajnwFy60fmER9H79rFLY9OmlUxaL\nRGmLCwrg7bd9jYBTt3El4NQJZsyw7cknW078Vq0s1r99e1MQxcWWIvmzz8w3kEie/oMPtvBQVwJO\nXSanlUBJCYwZk2kpnGzgo49sK2KzgdD+X6+e/Z9s2mTJ0SZNssihRJRAmC75rLNqRWTHyQpyTglM\nmgTvvWf748aVL3jh5CcffGDrAnbtgj//2RZ7gRWDmT/flMAll1i2zMcfT6z+bo8eZloK0x87Tl0k\nq5SAiAwWkfkiskhEfhWvzyWXWBraP/4Rbr01zQI6WcnatWbbP+oo6NDB3vTDt/cBA2yWsHmzOYBf\nfNHaYyOCKiMTJSUdJ51kzb+4iNQH7gMGA32BC0WkT9l+TZva9ve/h/32S6eETrby5ptWGKVt22jQ\nDouWnHCCnd+0CZo1M0Wwc2flRU0cJ5/IGiUAHAEsVtWlqroL+BcwtGynhQvhBz+w/bfftmX+27al\nVU4ny1i71pLBgRUxv+uu6Nyhh9r/x7p15igGq5HrOI6RTUqgA7Ai5nhl0FaK1q1NCXTrZkv5Dz88\nWhXq5Cfr1lkSOLD/h+uvj86JWMQQwN57p182x8l2sqmoTEIlwxo0uI3Fiy3Ou6iokCOOKOTjj2Hw\n4NoWz8lW1q41B3BF3Hkn3HJL+uRxnExTVFREUVFRQn2zSQkUA51ijjths4FSnH76bYwaFR0vWwZv\nvBH/hv/7v2b//eMfUyqnk2WsW2cLuyqiXTv7OE6+UFhYSGFMwejbb7+9wr7ZZA76EOgpIvuLSEPg\nfOCVsp3ati19fNhh8O67lhCsLHfcASNH1oqsThYRaw5yHKd6ZI0SUNUS4BfA68Bc4FlVnVe2X9k3\nvn79TDFMmVL+nk2a1IakTjbx/vvw8ceVzwQcx6mYbDIHoarjgfGV9Yn3xtelS5QgLJaSEtvu3On5\n4OsqRx5pW6/85Tg1I2tmAokS742vVSvLDhnLrl2wdav1X7cuPbLVVa691oqrZBuhkgcLFXYcp/rk\nnBLo1Kl8W8uWlugrlnXr7O2wQ4eoVqxTM154ISrSomoKNht48slMS+A4uU/OKYF4UR6tWpk5aMyY\nqHbssmWWB76gwGrFOjVj9277/S1ZYscvvmiLrb76KrNygVUFu//+iktIOo5TNTmnBMLasLG0bAn/\n+Iclk3v1VWtbuhT239+cxj4TqDnr1llRli++sOPQ9/JKubit9PP++3DKKXDhhZmWxHFyl5xTAvE4\n5hgLET3ooMhssXSpOYx9JpAcq1bZdt48+1x1leXZv/LKaNaVCb7+2hRS9+6Zk8Fx6gJ1Qgl062aD\n/pVX2oC/fj08/LANVm3buhJIlJEj4X/+p3TbqlVWmOWNN6BvX2u7+GIzE61ebbOETLBkCXTt6lk+\nHSdZ6sxXqEsX8xd8+in07m3mixNOsMRisbVnnYoZOdJy8ceyerXNtGJp0gRatDCn+8MPp08+MOUz\ndqwVgPdZgOMkT1atE0iWdu1g2jTbnznTFMDXX8Ps2ZmVK1fYvbt826pV0QwgZMeOqC7vli21L1cs\nU6dGBWP+9rf0Pttx6iJ1ZiYAVjh8yBCrJxuWD+zRw8xBmzdnVrZcIFQCf/yjKdFp0yJz0MaNUb9u\n3aJ1A7HttcmePTajO+EEywZ62mlw2WXpebbj1GXqlBJo3hxeftkGrZD69S3D6PPPZ06uXCFUAvfd\nB+edB0cfbek49t8/cgIvXWqpvLdvt+MVK8rfpzYcxqNHm8kP4PjjYcIEXyDmOKmgTimBivjxj6PQ\nUSc+06ZFTt41a2DRItufN89SMzRpAldcEQ3EIWH0UMhdd8FNN6VevnAmd/PN8Oyzqb+/4+QreaEE\nTjoJJk/OtBTpJ15m1Yo4+mjbnneeRQh9843l4D/jDCvj2aABPPBA1H/xYnj99fLpOlassDUbCxem\nNnLo668rp13XAAAYsklEQVRte+mlVibScZzUkBdKoE0bM198802mJUkfS5da0rwxYxK/5mc/s7fs\nUaPM8TtyJLz2Wvy+3btbvd6ySmDzZnMc9+4N//d/NRa/HMXF8Oij0KtX6u7pOE6eKAERUwTxMo3W\nVX77W3tj/vvfq+67c6e96T/4YPWe0bJlfCUQhpR+/HH17lcZxcWlfT2O46SGvFACYEogX7KJvv8+\n/POf8NRTFh5blaN29WpbVFfdhVehYzZ2hrVlC5x5pu2/8ILlGkoFa9Z4dTDHqQ1cCdRBjjzSnOFn\nnWVv+JXlTtqyxZzAZSu2JUqrVqUzuG7eDIWFVtpz1y4YPjw10UJr1tRcRsdxKiavlMDq1ZmWovYp\nKbEsn08/bce9e8P8+RX3P+ggGDSo5s7WLl3g88+j4y1b7F7Dh5t/Ye+94e23S19TXd/Mt9/afVu2\nrJmMjuNUTN4ogV69LGJl926LNMmGLJi1wapVVkchrKR2wAGVK4Fw0dd++9XseYcfDh9+GB1v3GhK\noHNnizT68kvL9BnLvvvaTCFRwtoQ9evXTEbHcSomb5RAnz6WF+f006FxYxg6NNMS1Q4/+EFp80tV\nSiCkadOaPa9XL5sJFBebyaakJP4be5heIpRt3LjEn+GmIMepPfJGCYRx8BMnRm2ZTIVcG6jCZ59F\npiCw1b7LlkXny/YPqelMoF49iy469lhbyNW7d+maD7NmWbK5cPFZ2boEieBKwHFqj7xRAgUFVnO4\nW7fIPLFjR2ZlSjULFpiN/sQTo7bWreGDD+Cww2zAjl1AFg7MUHMl0L8/PP64mWyef96UQCwHHQQn\nn2zP+uQTW1/QrZv5Z3buTOwZrgQcp/bIGyUAlvpg0SKbDRQUwKZNmZYodezZA++8Y3l1YmnVykw1\nYbGdN9+MzsXWDqipEjjqKEs29/zz5mspqwQAeva0fERPP20ZScePt0G9bMqJinAl4Di1R14pAYhi\n4Zs3NyXw2GOZK4ySSoYPh6uvjq8EwJTeDTeYuSike/coz08yWVb797fZVaNG8ZVAy5bw3nvw17/C\nr39tfoQ2bRIv+7lypSsBx6kt8k4JhDRvbm/Fl11WteN02LDE31ozxX/+Y9vjjivd3qKFbZ9/3gbr\nUAksWGCD8uGHW2GYYcOSe36DBpZ2YuDA8ufOPNMGfYgS0O29t80iKlu7cdFF5nSeOLG8cnMcJzXU\nqaIy1aFdO7j+etufObN84ZSQn/3M8u8MH57daQvq17fymmVz6zRoYNtOnSw8Nkz9fM01tu3b1+z2\nqeC+++K39+5tYaSdO9sHogVmzz1nSnj5cksDHrJrFzzzjNUP2LIlqg/hOE5qqfFMQET+LCLzRORT\nEXlRRJrGnLtFRBaJyHwRGRTTPkBEZgXn7olpbyQizwbt00WkS9nnpZqnnrJMmGeeaaUKK+Ktt2y7\ndWttS1RzVG2gvOuu0pE5ITt22Bt427aRCWbFClN+qVIAVdGpkyWU69DBjkMl8MUXpjxef710/xtu\nsO26daao4v1cjuMkTzLmoDeAA1W1P7AQuAVARPoC5wN9gcHA/SLffYVHAyNUtSfQU0QGB+0jgA1B\n+13AqCTkSojvfc9s4ueeayGUb70FN94Yv+8pp8QPaZw2zXLzhAuuMsX27TZI7r13/PPhwrG2bc3J\nqmpv3t26pU9GgF/+Mlrw9cQTltpi6VI7btDA5HrwQStkP368OfLnz7e1Do7j1A41VgKqOlFVQ5fq\n+0DHYH8oMEZVd6nqUmAxMFBE2gFNVHVG0O9J4OxgfwjwRLD/AnByTeWqLmEc/Z13lk99rGqhjAcf\nXDo/TsjRR0O/fnDOOWkRtUI2bzYfR1Xst5+ZWcI0002a1LpoFXL66eaUXrzYjr/6ylJFX3mlRRGt\nXw8DBphPIJw9OI6TelLlGL4MCFyTtAdi341XAh3itBcH7QTbFQCqWgJsEZEWKZKtUrp0MSUQFi2J\nZdMme7vu3Ln8TGDVKot6mTo18+sNNm9OLPePiP0sN95oxWIyTb9+8OmnNitr27Z0CdBevaBjRzPV\nJaLgHMepGZU6hkVkIhAvOO/Xqvpq0Oc3wLeq+kwtyFeO22677bv9wsJCCgsLk7pfhw5mH49XK/ex\nx8yp2aFD+SRooTkljLiZMwcOPDApUWrMpk2JD5QXXgi33w6TJtWuTImwzz7mK1ixwtJ6TJhgC8ve\nest8MO3bw7ZtUYST4ziJUVRURFFRUUJ9K1UCqnpqZedF5BLgDEqbb4qBTjHHHbEZQDGRySi2Pbym\nM7BKRPYCmqrqxnjPjFUCqSCMnolH+MZ88MGl4+vBzEOtWlkytEsvNQfruHFRLv10kuhMACwi6o03\nLN10NvDBB7BkSZRQ7tVX4aqrLKQ0rB/gMwHHqR5lX5Bvv/32CvsmEx00GLgJGKqqsQaRV4ALRKSh\niHQFegIzVHUNsFVEBgaO4ouBl2OuGR7s/xh4q6Zy1ZSBA81pWXbh2OjR5kBev750hND69ZaSAaK8\nRBMmpEfWsmzalLgSaNbMFm41bFi7MiVKQYGtF2jY0GTbZx9LQ3HnnVE4qSsBx6k9kvEJ/A1oDEwU\nkU9E5H4AVZ0LjAXmAuOBq1W/S1V2NfAwsAhYrKrhsPkI0FJEFgHXAzcnIVe1OeMM+PnPzTYdDvQ7\ndtgsoWNHUw7du5fOmx/OBCBaP1CvXmZWHyfqGM5mnnmm/MKxcOGZF5Z3nNqjxovFgnDOis6NBEbG\naf8I6BenfSdwXk1lSZawmPo999hK2oEDLTSxV68ozUSPHhbJcuihdvzll9FMIFQG994Lp52Wfqdr\ndWYC2cq++5Zv69DB/CzZvEjPcXKdvE0bEY9jj4UpU2x/9uzSjt5evWxxVcjKlZHNumvXqH3bNtuq\nwpNPWgx/bVMXZgIVMXt27is4x8lmXAnEcNxxkRJYvdoiV0Iuvthy7IQsWBAlS2vd2urqQpRj6OWX\nLdXEo4/WnrxXXGHRNHVhJuA4TmZwJRDDscfC5Mm2ZmDr1tLplfv0MT/Bpk32dr9wYemMmW+/DXfc\nUVoJnH127SqBFSvsudUJEXUcx4nFlUAMHTuaIhgzxnLxxJZcFLF1AZ9/Dn/5C5x0UumBV8Rs2MXF\n5hyeMAFGjYKPP7bEbbVBuJJ2xgyfCTiOUzNcCZTh4INtIC87EwBTAjNnmq3/qqvKXxsqgffeMwXS\nM3CdP/BA7cga+h9WrbKU0I7jONUlb1NJV0SbNmbvLzsTAMtmedddpiBOOKH8te3b26Ky446Dhx6y\n2cEdd0Q1flPNtm1WE2DXrpoXinccJ7/xmUAZWre2ePV4M4FDDoG5cy35WbyMnR06WKTOdddZHQKw\nCKLaKkizbZvVDo4tE+k4jlMdfCZQhjZtLN3yihXl366POca2hx0W/9rGjW3Qv+KKqK1dO4s0qg22\nbctsJlDHcXIfVwJl6NwZ3n3X9sOSiCFt28KLL8KJJ1Z8/ZIlpWcJHTpYVa0NGyzraCpxJeA4TrK4\nOagMPXpYFsvVq6N6uLH88IeVR+KUNRP16WO+hDffTK2c4ErAcZzk8ZlAHE46KXX3ErF00xs2pO6e\nIfGc147jONXBZwJpoGXL1CuBMB3FPvuk9r6O4+QXrgTSQG0oAV8l7DhOKnAlkAZqQwls3OhKwHGc\n5HElkAZqQwk8+ijMm5faezqOk3+4YzgNpHKtwDvvWETQXXel5n6O4+Q3rgTSQMeOVn8gFTz8cPn1\nC47jODXFzUFpoHVrS0OxY0fVfatiwQJLXXH44ZaoznEcJxlcCaSBevXg22/hRz9K7j5Tp5ofYN48\nK2/pMwLHcZLFlUCa+OMfk7te1WodfPONOZlXr4YWLVIjm+M4+YsrgTRx7LFR/v+asH59tN+rl80s\nfLWw4zjJ4kogTbRqZSacilizxlJMfPhh/PNhOGibNpaLqFkzMzM5juMkgw8jaaJly8qVQFGRbW+/\nPf754mLzKSxZYknpfKGY4zipwJVAmmjRwlI97NkT//z06bYdNw6++qr8+bVrLdR0331tJuBKwHGc\nVJC0EhCR/xaRPSLSIqbtFhFZJCLzRWRQTPsAEZkVnLsnpr2RiDwbtE8XkThJnHObBg2sMtm555Y/\n17Il3HNPdPzII+X7rFsXRQMNGgR//nPtyOk4Tn6RlBIQkU7AqcCymLa+wPlAX2AwcL+ISHB6NDBC\nVXsCPUVkcNA+AtgQtN8FjEpGrmzltdfgpZdKLxxTtTxAYG/5ANdfbz6CWNatg4IC22/cuPLCNo7j\nOImS7Ezgr0DZCrdDgTGquktVlwKLgYEi0g5ooqozgn5PAmcH+0OAJ4L9F4CTk5QrKykogKFDLd4/\nJDZi6PHHbdu7txWQj2XtWlt05jiOk0pqnDZCRIYCK1X1s+hFH4D2wPSY45VAB2BXsB9SHLQTbFcA\nqGqJiGwRkRaqurGm8mUrBxxgK36ffBIaNoTu3aNz55wDu3bBCy/ABRfAqFEWMQSwaFHpvo7jOKmg\nUiUgIhOBtnFO/Qa4BRgU2z2FctVZunWDn//c9jt3huXLbf/yy23A32svOP98GDHCZgn77Qc7d8Ky\nZdCzZ+bkdhynblKpElDVU+O1i8hBQFfg02AW0BH4SEQGYm/4nWK6d8RmAMXBftl2gnOdgVUishfQ\ntKJZwG233fbdfmFhIYWFhZX9CFlH6Nw99FB762/SBP7xD3vzj6WgwExA++0H8+fD/vtDo0ZpF9dx\nnBykqKiIojDuvApEVZN+oIh8AQxQ1Y2BY/gZ4AjMzPMm0ENVVUTeB64FZgCvAfeq6gQRuRrop6pX\nicgFwNmqekGc52gq5M0ke/bY23+bNhY2WlJib/xly0QefTTceaetNH7wQUsW98QT8e/pOI5TGSKC\nqsa11qQqlfR3I7OqzhWRscBcoAS4Ombkvhp4HNgH+I+qTgjaHwGeEpFFwAagnAKoK9SrZ2/1AHvv\nbcXi49UJbtvW8gPt2QOjR8ONN6ZVTMdx8oSUzATSRV2YCcTStq2ZfOL9SNdeC127wkEHwU9/CqtW\nRU5ix3Gc6pCOmYBTAyZMqHjl7/77w9KlsHAh/OpXrgAcx6kdPG1EBjnkEOhSwdroUAnMmgX9+6dT\nKsdx8gmfCWQp3brB7NmWdM6VgOM4tYXPBLKU3r1tJnD44V48xnGc2sOVQJayzz62Qvi88zItieM4\ndRmPDspiJk2ymUCYWM5xHKcmVBYd5ErAcRynjlOZEnBzkOM4Th7jSsBxHCePcSXgOI6Tx7gScBzH\nyWNcCTiO4+QxrgQcx3HyGFcCjuM4eYwrAcdxnDzGlYDjOE4e40rAcRwnj3El4DiOk8e4EnAcx8lj\nXAk4juPkMa4EHMdx8hhXAo7jOHmMKwHHcZw8xpWA4zhOHuNKwHEcJ49JSgmIyDUiMk9EZovIqJj2\nW0RkkYjMF5FBMe0DRGRWcO6emPZGIvJs0D5dRLokI1d1KCoqStejUkYuygy5KbfLnD5yUe5clLks\nNVYCInIiMAQ4WFUPAv4StPcFzgf6AoOB+0UkrG05Ghihqj2BniIyOGgfAWwI2u8CRpEmcvGPmIsy\nQ27K7TKnj1yUOxdlLksyM4GrgD+p6i4AVV0ftA8FxqjqLlVdCiwGBopIO6CJqs4I+j0JnB3sDwGe\nCPZfAE5OQi7HcRwnQZJRAj2B4wPzTZGIHB60twdWxvRbCXSI014ctBNsVwCoagmwRURaJCGb4ziO\nkwiqWuEHmAjMivMZEmzvCfp9H1gS7P8NuCjmHg8D5wADgIkx7ccBrwb7s4D2MecWAy3iyKP+8Y9/\n/OOf6n8qGuf3ohJU9dSKzonIVcCLQb8PRGSPiLTC3vA7xXTtiM0AioP9su0E5zoDq0RkL6Cpqm6M\nI4+UbXMcx3FqTjLmoH8DJwGISC+goap+CbwCXCAiDUWkK2Y2mqGqa4CtIjIwcBRfDLwc3OsVYHiw\n/2PgrSTkchzHcRKk0plAFTwKPCois4BvgZ8CqOpcERkLzAVKgKs1sOUAVwOPA/sA/1HVCUH7I8BT\nIrII2ABckIRcjuM4ToJIND47juM4+UberBgWkfqZlqE6iMjemZahJgQmwJxCRE4RkQGZlqO6iEjD\nTMtQE3Ltuwi5+31MhDqtBETkaBH5PYCq7s60PIkgIt8XkReBu0Xk5Fz5wojIYSLyJvC/gXM/6wlk\nnoD5t3pkWp5EEZGjROSfwG0i0isX/kdy8bsIuft9rA51VgmIyHBsAdpvROT8oC1rBycx7gAewBzm\ny4FLgNaZlCsRROS3wL+AZ1X14mCtR9YiIvVE5CHgIeBB4BmgT3guk7JVhYj0A+4FxgHrgMsJ/HHZ\nSq59FyG3v4/VJav/4ZNkFRa9NJggpYWqlsSksMgqAuf5u8CpqvoE5kBvCGzJpFwJ0giYoqoPwXdv\n2A0yLFOFqOoe4A3gOFV9CVulfqKI7B2cy2aOAear6hhsDc524CdZboZbQQ59F+G77+MkcvP7WC3q\njGNYRIYBBwAfqerLwbRNgn+2KcA7qnqriDQIU11kmrIyx7QfDzwFrMWirF4PvvRZQYzcH6vqv0Wk\nCfAcJuvxwBpgK/CSqj6XOUkjKvld18PSlJwP/EpVN2RIxLjE+b8+FLgby8G1WER+B/THFMOvMylr\niIgUAjtUdXpwXA+or6q7svW7COXljmk/DniaLP0+JkvOzwSCadtVwE3AUuDPInIZsG+MWeJK4DoR\nKciGf7oKZL5URPYLumwCLlXVI7C3kZODtRgZJY7cd4rI5aq6DXsrPRT4b1U9C5P7NBHpnTGBqfR3\n3QS+mxXMwxTB3sE1Gf9eVCD3JcBqbMb4uIi8jK3Wfw6oLyL7ZEhcAESkSWA/fwm4Qkqnfgn9AFn1\nXYSK5Y75P8jK72OqyPg/e7IE07YjgVGq+ii2FuFk4LjgiySqOhv7otwBICKnZ0xgKpT5FEzmeqo6\nS1XfDrq/C7QAtmVG2ogK5D5JRAar6vPAD1V1UtD9Tcx+mlG5K/ldHx+aI1R1JTAdS28SKoaMEkfu\n/wJOBQ5R1d8CVwCPBwp3EZbNd3vGBDa+Bd4BLsLMseeC/T5VdY+I1M+272JAXLmxdAuo6uxs/D6m\nipxUAiLyUxE5IeZNYx7QQUT2UtU3sVxExwKdwoVqqjoCGC4im4D+6bZHVkPmDmUuPRnYA3ydPmkj\nEpD7U6BQRDqr6uaYSwdhX6K0y12d/4+gfwMsX9U36ZY1lirkDvN4nSginVR1TuDPALO3v5+JGUwg\nc6GINFfVnZiz/U1gITAgfGOOlS3T38VE5VZVjSNbRr+PtUHOKIHgpb69iBRhXvqLgPtEpCmWg6g1\nUZjfv7Boj5bBtd2C6d67mDPwjphVzNkmc6vg2tNE5CPgTOC3qrq1tuVNQu4DiH7XJ4rIJ8DpwC2q\nmhZHWjL/H4FZYl+gSzpkjaUGcvcm+h85QkTeAU4Dnk7XDCaOzMOAv4tIa1XdoarfAtOA9ZivJZxd\n7RGRLiLyEmn+LiYht4rI3mJrST4mA9/H2iYnlEDwJqRAE6BYVU/CpvWbsaylY7EvyxEi0lStjsEW\n4IfBLTZi0+oTguloNssc1lhYDdymqkNUdX46ZE5S7vB3vRL4XSD3vByRGeBGVb01HfKmQO4fBbf4\nArhdVU9W1cUZlnkjFm4LgKouBD4E2olIDzF/Rb3gZ7sjnd/FJOXeG/NnrCX6v07b9zEdZHusbn3g\nD0A9ERmP/QFL4LsQs2uwwbIvMAb7UncERmJ/uBlB383A+zki8wdB38+Az9Ihc4rkDn/XizAbdc7I\nHPRPmx8gBXK/H/RdDxRliczXYVmATwj9Qqr6koj0AV4HGgMnqupc0vRdTLHcYRr9OkfWzgRE5ATg\nI6AZZq/9PbALs4keAd+tPLwde8t/E9Pox4jI+0Bz0vQFyWWZc1XuXJQ5V+Wuhsy3BXKH150H/AZz\nuvYLFIDLnW1oJUVlMvnB4s0vjjkejZW0vBSLmQaoD7QFnge6Bm3NgQ4uc92WOxdlzlW5qynzczEy\nHw8cnyO/66yRO92frJ0JYGaR5yTK1TEF6Kyqj2Ex0deqafGOwC5V/QJAVTepanFmRM5JmSE35c5F\nmSE35a6OzCUxMk9W1cmZERnIXbnTStYqAVXdruaxDxeZnAp8GexfBvQRkdcwm+nHmZCxLLkoM+Sm\n3LkoM+Sm3LkoM+Su3Okm69NGiCWaUixh1jVqS+V7YMVnDgSWqi32yRpyUWbITblzUWbITblzUWbI\nXbnTRdbOBELUUj80wDT4wYHmvhXYrapTsvGPl4syQ27KnYsyQ27KnYsyQ+7KnTYy7ZRI5AMcha3S\nm4Ilzsq4THVR5lyVOxdlzlW5c1HmXJY7HZ+sNwcBiEhHLGf6X9RW9WU9uSgz5KbcuSgz5KbcuSgz\n5K7c6SAnlIDjOI5TO2S9T8BxHMepPVwJOI7j5DGuBBzHcfIYVwKO4zh5jCsBx3GcPMaVgOM4Th7j\nSsBxHCeP+f9c2jF5wFgVPgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f3e3831f390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.A.cumsum().resample('1w').mean().compute().plot();"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}