Add files via upload

This commit is contained in:
philcarmona 2020-04-02 23:08:40 +02:00 committed by GitHub
parent 436eb48bd1
commit f2413c961f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 209 additions and 95 deletions

File diff suppressed because one or more lines are too long

103
ucovid.py
View File

@ -16,7 +16,7 @@ font = {'family' : 'normal',
'size' : 22}
plt.rc('font', **font)
plt.rc('text', usetex=True)
#plt.rc('text', usetex=True)
plt.rc('xtick',labelsize=22)
plt.rc('ytick',labelsize=22)
@ -71,6 +71,14 @@ dtt=np.linspace(-2*T,3*T,400)
g=periodise(f,T)
#plt.plot(dtt,[g(s) for s in dtt])
def lamat(betaA,betaS,piS,gammaA,gammaS):
return np.array([[piS*betaS-gammaS,piS*betaS],[(1-piS)*betaA,(1-piS)*betaA-gammaA]])
def lesabcissesspec(betaA,betaS,piS,gammaA,gammaS,cbeta):
azero=lamat(betaA,betaS,piS,gammaA,gammaS)
azcbeta=lamat(betaA*(1-cbeta),betaS*(1-cbeta),piS,gammaA,gammaS)
return(spectralabc(azero),spectralabc(azcbeta))
def matcroissance(betaa,betai,pii,gammai,gammaa):
def a(t):
return np.array([[pii*betai(t) -gammai,pii*betaa(t)],
@ -161,18 +169,18 @@ def siraipcbeta(T=1,nbpts=50):
#ecrivns une fonction que nous rendrons interactive
def siraicov(betaamax=0.25,
betaimax=0.25,
pii=0.15,gammaa=0.1,gammai=0.05,T=7,nbpts=50):
def siraicov(betaA=0.25,
betaS=0.25,
piS=0.15,gammaA=0.1,gammaS=0.05,T=7,nbpts=50):
ctt=np.linspace(0,1,nbpts)
l=[]
for cbeta in ctt:
def lrsp(p):
betaa=tauxcontacper(betaamax,p,cbeta,T)
betai=tauxcontacper(betaimax,p,cbeta,T)
a=matcroissance(betaa,betai,pii,gammai,gammaa)
phiT=np.dot(expm(a(0.01*T)*p*T),expm(a(0.99*T)*(1-p)*T))
fbetaA=tauxcontacper(betaA,p,cbeta,T)
fbetaS=tauxcontacper(betaS,p,cbeta,T)
a=matcroissance(fbetaA,fbetaS,piS,gammaS,gammaA)
phiT=np.dot(expm(a(0.99*T)*(1-p)*T),expm(a(0.01*T)*p*T))
return((np.log(spectralrad(phiT)))/T)
if (lrsp(0)*lrsp(1)<0):
p=brentq(lrsp,0,1)
@ -181,8 +189,85 @@ def siraicov(betaamax=0.25,
f,ax=plt.subplots(1,1)
axc=ax
axc.set_xlabel(r"cbeta : efficiency of social distancing")
axc.set_xlabel(r"$c_\beta$ : efficiency of social distancing")
axc.set_ylabel("p : proportion of freedom (no social distancing)")
axc.plot(utt,[ualon(i,rzero) for i in utt])
axc.plot(l[:,0],l[:,1])
def bsiraicov(betaA=0.25,
betaS=0.25,
piS=0.15,gammaA=0.1,gammaS=0.05,T=7,nbpts=50):
ctt=np.linspace(0,1,nbpts)
l=[]
la=[]
for cbeta in ctt:
def lrsp(p):
fbetaA=tauxcontacper(betaA,p,cbeta,T)
fbetaS=tauxcontacper(betaS,p,cbeta,T)
a=matcroissance(fbetaA,fbetaS,piS,gammaS,gammaA)
phiT=np.dot(expm(a(0.99*T)*(1-p)*T),expm(a(0.01*T)*p*T))
return((np.log(spectralrad(phiT)))/T)
if (lrsp(0)*lrsp(1)<0):
p=brentq(lrsp,0,1)
l.append([cbeta,p])
saz,sazcb=lesabcissesspec(betaA,betaS,piS,gammaA,gammaS,cbeta)
#print("saz,sazcb",saz,sazcb)
if (sazcb<0.0):
#print("\t :saz,sazcb",saz,sazcb)
la.append([cbeta,sazcb/(sazcb-saz)])
l=np.array(l)
la=np.array(la)
#print("l-la",l-la)
f,ax=plt.subplots(1,1)
axc=ax
axc.set_xlabel(r"$c_\beta$ : efficiency of social distancing")
axc.set_ylabel("p : proportion of freedom (no social distancing)")
axc.plot(utt,[ualon(i,rzero) for i in utt],label="Ualon")
axc.plot(l[:,0],l[:,1],label="true critical line")
axc.plot(la[:,0],la[:,1],label="approximate critical line")
axc.legend(loc='upper left')
axc.set_title("T="+str(T))
#jeudi 2 avril 2020 : il faut que je verifie mon theoreme sur les abcisses spectrales
A=lamat(betaamax,betaimax,pii,gammaa,gammai)
B=lamat(betaamax*(1-cbeta),betaimax*(1-cbeta),pii,gammaa,gammai)
[np.log(spectralrad(np.dot(expm(B*(1-p)*T),expm(A*p*T))))/T for T in 10*np.arange(1,40)]
spectralabc(A)*p + spectralabc(B)*(1-p)#pas la meme quantite
spectralabc(A)-np.log(spectralrad(expm(A)))#la cela coincide
#il faut prendre T del 'orde de 400 pour que cela se rapproche!!!
#on trace maintenant avec deux périodes pour en voir l'influence
def bipersiraicov(betaA=0.25,
betaS=0.25,
piS=0.15,gammaA=0.1,gammaS=0.05,T1=7,T2=100,nbpts=50):
ctt=np.linspace(0,1,nbpts)
l=[[],[]]
for i, T in enumerate((T1,T2)):
for cbeta in ctt:
def lrsp(p):
fbetaA=tauxcontacper(betaA,p,cbeta,T)
fbetaS=tauxcontacper(betaS,p,cbeta,T)
a=matcroissance(fbetaA,fbetaS,piS,gammaS,gammaA)
phiT=np.dot(expm(a(0.99*T)*(1-p)*T),expm(a(0.01*T)*p*T))
return((np.log(spectralrad(phiT)))/T)
if (lrsp(0)*lrsp(1)<0):
p=brentq(lrsp,0,1)
l[i].append([cbeta,p])
l=np.array(l)
f,ax=plt.subplots(1,1)
axc=ax
axc.set_xlabel(r"$c_\beta$ : efficiency of social distancing")
axc.set_ylabel("p : proportion of freedom (no social distancing)")
axc.plot(utt,[ualon(i,rzero) for i in utt],label="U Alon")
axc.plot(l[0][:,0],l[0][:,1],label="T="+str(T1))
axc.plot(l[1][:,0],l[1][:,1],label="T="+str(T2))
axc.legend(loc='upper left')
axc.set_title(r"critical curves : $p(c_\beta)$")