Add files via upload
This commit is contained in:
parent
ae97e2fb6e
commit
98581fdc58
215
AIcovid.ipynb
Normal file
215
AIcovid.ipynb
Normal file
File diff suppressed because one or more lines are too long
188
ucovid.py
Normal file
188
ucovid.py
Normal file
@ -0,0 +1,188 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
import pandas as pd
|
||||
from scipy.integrate import odeint,quad
|
||||
from scipy.stats import kde,beta
|
||||
import seaborn as sns
|
||||
#%matplotlib
|
||||
from importlib import reload
|
||||
pi=np.pi
|
||||
from scipy.optimize import brentq
|
||||
|
||||
#pour matplotlib
|
||||
font = {'family' : 'normal',
|
||||
'weight' : 'bold',
|
||||
'size' : 22}
|
||||
|
||||
plt.rc('font', **font)
|
||||
plt.rc('text', usetex=True)
|
||||
plt.rc('xtick',labelsize=22)
|
||||
plt.rc('ytick',labelsize=22)
|
||||
|
||||
#mardi 31 mars 2020
|
||||
#essayons tout d'abord d'écrire des fonctions qui calculent le rayon spectral
|
||||
#et l'abcisse de convergence d'une matrice
|
||||
|
||||
from numpy import linalg as LA
|
||||
from scipy.linalg import expm
|
||||
|
||||
def spectralabc(m):
|
||||
"""m is a matrix"""
|
||||
return(LA.eigvals(m).real.max())
|
||||
|
||||
def spectralrad(M):
|
||||
"""M is a matrix : returns the spectral radius"""
|
||||
return(np.absolute(LA.eigvals(M)).max())
|
||||
|
||||
#et on teste
|
||||
|
||||
A=np.array([[1, -1], [4, 2]])
|
||||
B=np.diag((1, 2, 3))
|
||||
|
||||
ei=LA.eigvals(A)
|
||||
z=ei[0]
|
||||
rei=ei.real
|
||||
|
||||
np.exp(spectralabc(A))
|
||||
spectralrad(expm(A)) #doit donner la même chose
|
||||
|
||||
#un premier modele de covid avec deux classes Asymptomatique et Infectieux
|
||||
def tauxcontacper(beta,p,cbeta,T):
|
||||
"""renvoie une fonction de contact de periode T qui vaut beta pendant une fraction p de laperiode et beta(1-cbeta) pendant le reste de la periode"""
|
||||
def f(t):
|
||||
if (t <= T*p):
|
||||
return(beta)
|
||||
else:
|
||||
return(beta*(1-cbeta))
|
||||
return(f)
|
||||
def periodise(f,T=1):
|
||||
#retourne la fonction qui etait definie sur [0,T] periodisee sur R
|
||||
def g(t):
|
||||
return(f(t-T*np.floor(t/T)))
|
||||
return(g)
|
||||
T=7
|
||||
p=0.3
|
||||
tt=np.linspace(0,T,100)
|
||||
f=tauxcontacper(0.25,p,0.8,T)
|
||||
#plt.plot(tt,[f(s) for s in tt])
|
||||
|
||||
dtt=np.linspace(-2*T,3*T,400)
|
||||
g=periodise(f,T)
|
||||
#plt.plot(dtt,[g(s) for s in dtt])
|
||||
|
||||
def matcroissance(betaa,betai,pii,gammai,gammaa):
|
||||
def a(t):
|
||||
return np.array([[pii*betai(t) -gammai,pii*betaa(t)],
|
||||
[(1-pii)*betai(t),(1-pii)*betaa(t)-gammaa]])
|
||||
|
||||
return(a)
|
||||
betaamax=0.25
|
||||
betaimax=0.25
|
||||
cbeta=0.8
|
||||
pii=0.15
|
||||
p=0.3
|
||||
gammaa=0.1
|
||||
gammai=0.05
|
||||
betaa=tauxcontacper(betaamax,p,cbeta,T)
|
||||
betai=tauxcontacper(betaimax,p,cbeta,T)
|
||||
#plt.plot(tt,[betaa(s) for s in tt])
|
||||
a=matcroissance(betaa,betai,pii,gammai,gammaa)
|
||||
spectralabc(a(1)),spectralabc(a(5))
|
||||
#puis la on calcule la composee des exponentielles de matrices
|
||||
phiT=np.dot(expm(a(5)*(1-p)),expm(a(1)*p))
|
||||
np.log(spectralrad(phiT)),p*spectralabc(a(1))+(1-p)*spectralabc(a(5))
|
||||
#l'approximation du rayonspectral par l'integrale de l'abcisse spectrale
|
||||
#n'est pas si mauvaise que cela.
|
||||
|
||||
#verifions que si gammai=gammaa, alors il n'y a qu'une classe d'infecte, et le rzero c'est beta/gamma
|
||||
|
||||
b=matcroissance(betaa,betaa,pii,gammaa,gammaa)
|
||||
spectralabc(b(1)),spectralabc(b(5)) #on obtient les beta -gamma pour les deux périodes de temps
|
||||
phiT=np.dot(expm(b(5)*(1-p)),expm(b(1)*p))
|
||||
np.log(spectralrad(phiT)),p*spectralabc(b(1))+(1-p)*spectralabc(b(5))
|
||||
|
||||
#tracons la courbe de Uri Alon
|
||||
sns.set(style="whitegrid")
|
||||
def ualon(cbeta,rzero=2.5):
|
||||
return( (1-rzero*(1-cbeta))/(rzero*cbeta))
|
||||
rzero=2.5
|
||||
utt=np.linspace(1-1/rzero,1,100)
|
||||
#plt.xlabel(r"$c_\beta$ : efficiency of social distancing")
|
||||
#plt.ylabel("p : proportion of freedom (no social distancing)")
|
||||
#plt.plot(utt,[ualon(i,rzero) for i in utt])
|
||||
|
||||
#mercredi premier avril 2020
|
||||
#tracons le rayon spectral pour une periode en fonction de p, avec cbeta donne
|
||||
|
||||
def lrsp(p,T=1):
|
||||
betaa=tauxcontacper(betaamax,p,cbeta,T)
|
||||
betai=tauxcontacper(betaimax,p,cbeta,T)
|
||||
#plt.plot(tt,[betaa(s) for s in tt])
|
||||
a=matcroissance(betaa,betai,pii,gammai,gammaa)
|
||||
phiT=np.dot(expm(a(0.01*T)*p*T),expm(a(0.99*T)*(1-p)*T))
|
||||
return((np.log(spectralrad(phiT)))/T)
|
||||
|
||||
#ptt=np.linspace(0,1,100)
|
||||
#plt.plot(ptt,[lrsp(p,1) for p in ptt])
|
||||
|
||||
#on voit que cela ne depend presque pas de la periode
|
||||
#plt.plot(ptt,[lrsp(p,7) for p in ptt])
|
||||
|
||||
#lancons maintenant la recherche du point d'annulation
|
||||
brentq(lambda a: lrsp(a,T=7),0,1)
|
||||
|
||||
#puis faisons le trace de la courbe p fonction de cbeta
|
||||
def siraipcbeta(T=1,nbpts=50):
|
||||
ctt=np.linspace(0,1,nbpts)
|
||||
l=[]
|
||||
for cbeta in ctt:
|
||||
def lrsp(p):
|
||||
betaa=tauxcontacper(betaamax,p,cbeta,T)
|
||||
betai=tauxcontacper(betaimax,p,cbeta,T)
|
||||
a=matcroissance(betaa,betai,pii,gammai,gammaa)
|
||||
phiT=np.dot(expm(a(0.01*T)*p*T),expm(a(0.99*T)*(1-p)*T))
|
||||
return((np.log(spectralrad(phiT)))/T)
|
||||
if (lrsp(0)*lrsp(1)<0):
|
||||
p=brentq(lrsp,0,1)
|
||||
l.append([cbeta,p])
|
||||
return(l)
|
||||
|
||||
# l=np.array(siraipcbeta(T=7))
|
||||
|
||||
# f,ax=plt.subplots(2,1)
|
||||
# axc=ax[0]
|
||||
# axc.set_xlabel(r"$c_\beta$ : efficiency of social distancing")
|
||||
# axc.set_ylabel("p : proportion of freedom (no social distancing)")
|
||||
# axc.plot(utt,[ualon(i,rzero) for i in utt])
|
||||
# axc.plot(l[:,0],l[:,1])
|
||||
# axc=ax[1]
|
||||
# axc.plot(l[:,0],l[:,1])
|
||||
|
||||
|
||||
#ecrivns une fonction que nous rendrons interactive
|
||||
def siraicov(betaamax=0.25,
|
||||
betaimax=0.25,
|
||||
pii=0.15,gammaa=0.1,gammai=0.05,T=7,nbpts=50):
|
||||
|
||||
ctt=np.linspace(0,1,nbpts)
|
||||
l=[]
|
||||
for cbeta in ctt:
|
||||
def lrsp(p):
|
||||
betaa=tauxcontacper(betaamax,p,cbeta,T)
|
||||
betai=tauxcontacper(betaimax,p,cbeta,T)
|
||||
a=matcroissance(betaa,betai,pii,gammai,gammaa)
|
||||
phiT=np.dot(expm(a(0.01*T)*p*T),expm(a(0.99*T)*(1-p)*T))
|
||||
return((np.log(spectralrad(phiT)))/T)
|
||||
if (lrsp(0)*lrsp(1)<0):
|
||||
p=brentq(lrsp,0,1)
|
||||
l.append([cbeta,p])
|
||||
l=np.array(l)
|
||||
|
||||
f,ax=plt.subplots(1,1)
|
||||
axc=ax
|
||||
axc.set_xlabel(r"$c_\beta$ : efficiency of social distancing")
|
||||
axc.set_ylabel("p : proportion of freedom (no social distancing)")
|
||||
axc.plot(utt,[ualon(i,rzero) for i in utt])
|
||||
axc.plot(l[:,0],l[:,1])
|
||||
|
Loading…
x
Reference in New Issue
Block a user